成像质谱显微镜iMScope QT作为岛津近年来高端质谱领域发布的重磅新产品,融合光学显微镜、MALDI和Q-TOF的显微质谱成像技术很让人期待!成像质谱显微技术研究物质的空间分布具有显著优势,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息,在医学、药学、农业食品、公共安全、资源环境、工业等领域有着广泛的应用前景。
下面小编就给大家带来一份iMScope QT的详细图文测评报告,相信大家看过之后,对这款产品一定有了更深入的了解。
开箱初见
坐着飞机悄然落地实验室的大家伙终于迎来了开箱时刻,百闻不如一见,一起来体验一下吧!
iMScope QT和MS-9030合体过程
岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope QT),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置四极杆飞行时间质谱仪(Q-TOF)。
将光学显微镜和质谱仪整合成一体,既可观察得到高分辨率的形态图像,又可以对特定分子进行鉴定和可视化分布分析,可将两种不同检测原理的图像进行重叠分析,为成像分析提供了全新的工具。
镜质合璧,还原真实
作为一台搭载了光学显微镜的质谱成像仪,两种不同检测原理的图像如何进行采集,图像重叠分析时又会碰撞出怎样的火花呢?
在下图中是从光学图像中选择肝门静脉进行质谱成像分析,可以清晰观察到肝门静脉周边的血脂和脂质的分布。
多角度测评环节正式开始
下面请随着小编从分辨率、扫描速度、灵敏度等几个角度进行测评。
空间分辨率
“高清镜头”下的微观世界
作为一款搭载了光学成像镜头和质谱成像功能的仪器,iMScope QT的光学显微镜物镜最大可达到40倍率又结合质谱成像显微镜5μm空间分辨率,究竟能够将研究视野深入到什么样的微观水平呢?小编拿来了大家关注的亚细胞水平的组织器官,看看iMScope QT能观察到微观世界哪些变化。
以槲皮素为例,iMScope QT成功观察到其在肝脏部位的细胞水平分布,分析结果表明药物主要分布在细胞间质,充分显示了成像质谱显微镜分析亚细胞水平的可靠性。高空间分辨率对于药物动态分析、安全性评估和毒性机制的阐明,以及视网膜和皮肤等特殊组织的分析中都具有重要意义。
扫描速度
快速制图“小能手”
iMScope QT这款产品拥有超高质谱空间分辨率给细胞水平上的研究带来便利,但是小编担心如果没有快速的扫描速度作保障,在大面积样本成像时会消耗很长的时间才能完成分析。带着疑虑,小编准备了小鼠全脑切片(14ⅹ7mm),空间分辨率采用20 μm,扫描区域245000pix,2.6小时后我们获得一张高清晰度小鼠脑成像图。与同类质谱成像产品比,iMScope QT能够高速、高效地采集到高清晰度的质谱成像图。
小鼠脑成像质谱图
灵敏度
“火眼金睛”看切片
质谱成像中高灵敏度分析也是至关重要的,尤其在药物代谢研究中对低浓度代谢物分布的研究。iMScope QT在硬件性能上较之前作了较大提升,后端Q-TOF型LCMS-9030的接入提高了质谱检测的灵敏度。在本次开机测评中,小编分析了给药后的大鼠肺中抗心律失常药物胺碘酮及其代谢物的分析,明确了药理学研究中的发现是胺碘酮副作用引起。
给药后的大鼠肺部病理切片分析发现坏死区域
质谱成像发现抗心律失常药物胺碘酮及其代谢物在坏死区域的分布,明确了药理学研究中的发现是胺碘酮副作用引起。
系统扩展性
成像定位分析与液质分析的完美兼容
cope QT不仅局限在成像分析,成像单元支持移动分开和组装使用,小编实验室就是将已有LCMS-9030的Q-TOF单元与成像单元连接后使用,确实可以实现质谱成像分析和LCMS-9030的兼用系统,既可以用于准确定性定量分析,也可以完成可靠的定位分析。
结语
整体而言,成像质谱显微镜iMScope QT将光学显微镜和质谱仪整合成一体既可观察到高分辨率的形态图像,为成像分析提供了全新的工具。在拥有高空间分辨率同时,还能高速扫描,高效获得高质量成像数据。同时还能保持系统的拓展性,通过一台仪器即可获得LC-MS的定性、定量信息和质谱成像的位置信息。期待iMScope QT能够为国内相关科研工作者们的研究带来帮助,落地开花结出硕果。