大数据技术有助于生态环境监测数字化转型
大数据技术作为“数字生产力”,具有数据高效采集和预处理、数据科学组织存储、数据智能分析与挖掘、数据可视化展示和应用等特征,能帮助行业快速获取有价值的信息,支持智慧化管理与决策、精准、高效解决行业问题。生态环境监测是生态环境保护的重要基础,是推进生态文明建设的重要支撑。加强生态环境监测是推动实现减污降碳协同增效的迫切需要,也是推进生态环境治理体系和治理能力现代化的重要举措。充分利用大数据技术优势,解决环境监测数据获取、环境质量分析、环境质量预测预报、环境污染成因解析、污染源执法监测、环境风险应急预警等业务情景下面临的问题,对于保障生态环境监测数据“真、准、全、快、新”,实现生态环境监测数字化转型、让我国生态环境监测网络建设更加完善科学、生态环境管理、社会服务支撑更加扎实有力有重要意义。
大数据技术与生态环境监测行业的有机结合是发挥生态环境监测数据应用效益、提高监测监管工作效率、推进环境监测业务革新的重要途径。与电力、水利、工信等其它行业相似,生态环境监测领域的大数据关键技术主要有4种类型,分别是数据采集与预处理;监测数据集成管理;数据分析和挖掘;数据时空可视化展现和应用。数据采集技术主要是指通过传感器、通信网络、智能识别系统、互联网泛在等多种生态环境监测感知手段实现对各种环境监测对象信息的快速定位、采集、传输、信号转换等。
数据预处理技术是以直接面向快速分析处理为目的,对多种类型数据进行抽取、清洗、转换等操作,实现对复杂数据的快速、规范化处理。生态环境监测数据类型多样,常见以结构化为主,也有半结构化、非结构化。除文本字符以外,也有视频、图片、GIS等数据,单纯依靠传统关系型数据库是无法满足数据存储要求的。关系型数据库、空间数据库、分布式文件系统、云存储、NoSQL等多种数据存储技术支撑监测数据的高效管理和灵活调用。数据集成管理技术主要是针对生态环境监测数据的整合、存储和资源化过程,根据实际业务需要选择不同的存储模式,在多种数据存储技术基础上,面向业务应用实现提供统一数据服务的能力,实现业务应用与数据存储基础设施的解耦。
数据分析与挖掘技术允许利用数理统计、数值模拟、算法模型、机器学习、神经网络等多种方法,使用分布式计算、内存计算与数据流处理等多种数据处理手段对环境质量、污染排放、监控监管、自然资源、社会经济等数据进行深度挖掘分析,识别环境风险或污染排放异常行为,研究关联关系及变化规律,提升监控预警或环境质量预测预报水平,高效支撑管理决策,优化环境治理措施。数据时空可视化展现和应用技术允许以图文、报表、GIS、二三维等形式将环境形势分析研判、污染精细化管控、监测信息公开等相关内容动态、直观、生动、智能地呈现给决策者、管理者、业务技术人员和社会公众等用户,供其分析使用。
展源
何发
2020-05-27
2020-05-27
2020-05-27
2021-01-11
2020-05-27
2021-04-25
2020-05-27
2024-03-06
2023-03-13
2020-05-27
加载更多