荧光共振能量转移 (fluorescence resonance energy transfer,FRET),是指能量从一种受激发的荧光基团 (fluorophore)以非辐射的方式转移到另一种荧光基团的物理现象。FRET的能量转移效率是两个荧光基团间距离的函数,并对此距离十分敏感,它的有效响应距离一般在1~10 nm之间,因而可被用于测定原子间及分子间的距离. 这一特点使FRET技术在大分子构象变化、大分子之间相互作用、细胞信号通路等研究中发挥重要作用, 成为生物医学研究中的重要方法。但细胞内的生物学过程常常涉及多于两个的大分子间相互作用,二色荧光基团的FRET技术不能满足这种生物学研究的需求。 最近,两个研究小组在这方面取得突破,建立了分别基于共聚焦显微镜和流式细胞仪的三色荧光级联FRET技术. 这一技术的出现将会极大地促进生物学及相关研究领域的发展。
荧光共振能量转移(FRET)
一、活细胞研究遇到的问题:
蛋白质或其他分子在活细胞内互相结合的时间和地点是了解它们功能的关键问题。要回答这一问题,需将蛋白质标上不同的荧光团。但是,光学显微镜的分辨率将蛋白质检测精度限制在大约0.2μm左右。要研究蛋白质成分的相互物理作用,需要高的分辨率。
二、什么是FRET?
FRET就是采用非放射方法,在供体和受体相互靠得很近(1-10 nm)时,将光子能从一个受激发的荧光团(供体)转移到另一个荧光团(受体)。 采用FRET,可以解决超过光学显微镜分辨率限制的分子相对邻近度问题,来显示(例如)(1)二个蛋白质成分间分子相互作用;(2)一个分子内部(如酶活动能力、DNA/RNA形态)的结构变化;(3)采用象CFP-YFP Cameleon这样特别的FRET-工具的离子浓度
三、FRET原理
受激发后的荧光团(供体)将受激发的静能转移到一个光吸收分子(受体)。这种能的转移是非放射性的,其主要原因是供体和受体之间的偶极-偶极间的相互作用。通过双偶极反应,一个处于激发态的供体以非激发方式将能量传递给旁边的受体。 这一理论基于将被激发荧光分子看成振荡偶极子,能够和有同一震荡频率的另一个偶极子发生能量交换。
只有几个荧光团对才适合FRET实验,因为,除了其他必要条件(如偶极子定向、足够的荧光寿命),供体放射光谱必须将受体的激发光谱重叠起来。已知的FRET对是CFP/YFP、BFP/GFP、GFP/诺丹明、FITC/Cy3。
四、FRET的应用
象绿色荧光蛋白质(GFP)这样的荧光蛋白质(FPs)对FRET实验非常有吸引力。它们可以以基因方法被融合到有关蛋白质中去并且用细胞表达,使它们成为基因表达和蛋白质在活细胞中本地化的极好报告系统。可以提供不同光谱特性的增强型FP变异。
用青绿色的CFP作供体、黄色的YFP作受体是最适合做活细胞FRET实验的,因为CFP放射光谱部分重叠了YFP激发光谱。当它们足够接近时,用CFP的吸收波长激发,CFP的发色基团将会把能量高效率地共振转移至YFP的发色基团上,所以CFP的发射荧光将减弱或消失,主要发射将是YFP的荧光。两个发色基团之间的能量转换效率与它们之间的空间距离的6次方成反比,对空间位置的改变非常灵敏[1-2 ]。例如要研究两种蛋白质a和b间的相互作用,可以根据FRET原理构建一融合蛋白,这种融合蛋白由三部分组成:CFP(cyan fluorescent protein)、蛋白质b、 YFP(yellow fluorescent protein)。用CFP吸收波长433nm作为激发波长,实验灵巧设计,使当蛋白质a与b没有发生相互作用时,CFP与YFP相距很远不能发生荧光共振能量转移,因而检测到的是CFP的发射波长为476nm的荧光;但当蛋白质a与b发生相互作用时,由于蛋白质b受蛋白质a作用而发生构象变化,使CFP与YFP充分靠近发生荧光共振能量转移,此时检测到的就是YFP的发射波长为527nm的荧光。将编码这种融合蛋白的基因通过转基因技术使其在细胞内表达,这样就可以在活细胞生理条件下研究蛋白质-蛋白质间的相互作用。
互联网
展源
何发
2020-05-27
2020-05-27
2020-05-27
2022-07-29
2020-05-27
2020-05-27
2020-04-09
2024-08-05
2023-02-20
2020-05-27
加载更多