以内标法为例,选一与欲测组分相近但能完全分离的组分做内标物(当然是样品中没有的组分),然后配制欲测组分和内标物的混合标准溶液,进样得相对校正因子。再将内标物加入欲测组分的样品中,进样后测得欲测组分和内标物的定量参数,用内标法公式计算即可。
其实,从定义上来区分的话,外标法就是用标准品的峰面积或峰高与其对应的浓度做一条标准曲线,测出样品的峰面积或峰高,在标准曲线上查出其对应的浓度,这是最常用的一种定量方法;内标法是对应外标法说的,内标法是将一定量的纯物质作内标物,加入到准确称量的试样中,根据被测试样和内标物的质量比及其相应的色谱峰面积之比,来计算被测组分的含量。
外标法需要用样品和标准品对比,但是有时我们很难保证样品和标准品进的体积是一样的,毕竟要有误差,这时候就用内标法,就是在外标法的基础上,在样品和标准品里在加入一种物质,通过加入物质的峰面积或峰高的变化,就可以看出我们标准品和样品进样体积的差别,但同时会引进加入物质的秤量误差。所以一般用外标法来定量,如果进样体积很难掌握,就用内标法,可以消除进样体积的误差。
1
外标法(标准曲线法、直接比较法)
首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。
当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b, b的绝对值应不大于100%响应值是y的2%。
标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用。
标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。
2
内标法
选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。
内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。
内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。
内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量的2-2是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。
3
标准加入法
标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。
标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。
标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
选择内标物有4个要求:
1、内标物应是该试样中不存在的纯物质;
2、它必须完全溶于试样中,并与试样中各组分的色谱峰能完全分离;
3、加入内标物的量应接近于被测组分;
4、色谱峰的位置应与被测组分的色谱峰的位置相近,或在几个被测组分色谱峰中间。
内标法的优点是测定的结果较为准确,由于通过测量内标物及被测组分的峰面积的相对值来进行计算的,因而在一定程度上消除了操作条件等的变化所引起的误差。内标法的缺点是操作程序较为麻烦,每次分析时内标物和试样都要准确称量,有时寻找合适的内标物也有困难。
外标法简便,但进样量要求十分准确,要严格控制在与标准物相同的操作条件下进行,否则造成分析误差,得不到准确的测量结果。
内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,我想简单而有效进行定量分析来满足要求才是最重要的。
下面用几个例子来说明:
案例1:
以前做过很多医药、农药中间体的芳香族卤代化合物的常量定量分析,没有自动进样器,用外标法定量,确实重现性与稳定性非常差,结果经常受到搞合成同事的质疑。其实,仔细分析原因不一定就是外标法不适合这种定量分析,首先我们的实验室仪器和手段是否调整到一种稳定而合理的状态了,比如,衬管是否洁净,玻璃棉的位置是否合适恰当(能否使样品尽可能的汽化)、汽化温度是否合适、色谱峰形是否对称(也就是样品与色谱柱健合相是否匹配)、附近有没有其它色谱峰的干扰、选用什么进样方式(如快速进样还是热针进样)等等因素的影响都需要考虑,如果这些因素都考虑了,按照GMP方法验证对于精密度的要求,同一样品进6针以上的RSD和配制6个样品的定量结果RSD都能满足小于1.5%的要求,那么这个方法用外标法就是完全适用的,但是前面的影响因素是一定要都考虑到的,否则谈论这个方法是否适用就有失偏颇了。
在做过的许多出口产品的定量分析方法当中有许多是一些医药公司提供的比较完善而验证过的方法,内标与外标都有(他们用的都是自动进样)精密度都能满足RSD小于1.5%的要求,当一个方法能够满足测试要求的时候,无论内标外标,都是可行的,当然有一个分析成本和分析时间的问题,内标的成本和控制溶液、样品溶液的配制当然要比外标要高和麻烦一些了。而有些时候,可能受你实验室现有仪器和附属设备的影响,达不到一定的要求,而还必须进行定量分析,有时外标的结果可能就要差一些,这时,你可能就要考虑用内标法了,可以排除手动进样的误差、分流歧视的影响、包括一些未知因素平行误差的影响,这时内标可能就显示出它的优势来了。
案例2:
上面已经提到当做方法验证的时候,当同一样品配制6个样品溶液用所选用的外标法进行定量的时候,RSD都满足1.5%的要求时,也分为两种情况,小于1%和大于1%小于1.5%。如果RSD的结果小于1%,那这个方法就没有什么可以怀疑的了;如果RSD的结果大于1%而在1.5%略低一些的范围活动时,这个方法的可行性就将受到质疑,毕竟这是方法验证,你就要考虑上面1所提到的影响因素的影响了,如果排除掉以上的影响因素,RSD还是在1.5%附近,就要尝试内标了,如果内标结果的RSD很好,就证明你的这个方法受实验条件的影响很大,只能用内标了,或者干脆将原方法做大的变动,再尝试用外标法测试。
案例3:
而对于微量分析,比如农药和兽药残留的分析、环境分析等,根据不同的限量标准要求对于精密度的要求也比常量分析的要求要宽松的多,RSD有时可以允许达到10%甚至更高,这时可能外标法有更大的应用空间。
案例4:
单从精密度方面去考虑,排除其它成本和效率的因素,个人认为还是内标优于外标。曾经做过一个中间体二氨基丙醇的常量定量分析,以二乙醇胺为内标,RTX-5amine(碱改性)15m*0.32mm*1.0um色谱柱分析,将配制好的控制溶液(含有内标物)自动进样器进6针,目的物(二氨基丙醇)与内标物(二乙醇胺)峰面积比率的RSD为0.18%,而只对这六针样品的目的物峰(二氨基丙醇)面积求RSD,结果为0.71%,通过这一实例的结果大家就会发现到底哪个方法精密度更好了,当然是内标更好了。当然这个化合物的检测方法最后根据上面的验证数据用内标和外标定量都是可以的,实验室可以自由选择。但内标与外标精密度结果的差异是显然存在的事实。
4
小结
综上所述,如果应用外标法能够满足要求的话,当然首选还是外标法,毕竟简单而省事。对于精密度要求比较高、结果准确度会产生重大影响、实验室条件不是很理想的等等条件下,用内标法还是必要的。但无论应用那种方法,方法的验证和确认都是很重要的,只要是按照程序经过验证和确认的方法,都有其应用的空间的。
分析圈
展源
何发
2020-05-27
2022-01-20
2021-01-12
2024-05-14
2022-12-12
2020-05-27
2021-01-07
2023-01-03
2024-03-13
加载更多